4 research outputs found

    Enhancing Clinical Learning Through an Innovative Instructor Application for ECMO Patient Simulators

    Get PDF
    © 2018 The Authors. Reprinted by permission of SAGE PublicationsBackground. Simulation-based learning (SBL) employs the synergy between technology and people to immerse learners in highly-realistic situations in order to achieve quality clinical education. Due to the ever-increasing popularity of extracorporeal membrane oxygenation (ECMO) SBL, there is a pressing need for a proper technological infrastructure that enables high-fidelity simulation to better train ECMO specialists to deal with related emergencies. In this article, we tackle the control aspect of the infrastructure by presenting and evaluating an innovative cloud-based instructor, simulator controller, and simulation operations specialist application that enables real-time remote control of fullscale immersive ECMO simulation experiences for ECMO specialists as well as creating custom simulation scenarios for standardized training of individual healthcare professionals or clinical teams. Aim. This article evaluates the intuitiveness, responsiveness, and convenience of the ECMO instructor application as a viable ECMO simulator control interface. Method. A questionnaire-based usability study was conducted following institutional ethical approval. Nineteen ECMO practitioners were given a live demonstration of the instructor application in the context of an ECMO simulator demonstration during which they also had the opportunity to interact with it. Participants then filled in a questionnaire to evaluate the ECMO instructor application as per intuitiveness, responsiveness, and convenience. Results. The collected feedback data confirmed that the presented application has an intuitive, responsive, and convenient ECMO simulator control interface. Conclusion. The present study provided evidence signifying that the ECMO instructor application is a viable ECMO simulator control interface. Next steps will comprise a pilot study evaluating the educational efficacy of the instructor application in the clinical context with further technical enhancements as per participants’ feedback.Peer reviewedFinal Accepted Versio

    Extracorporeal membrane oxygenation simulation-based training: methods, drawbacks and a novel solution

    Get PDF
    Introduction: Patients under the error-prone and complication-burdened extracorporeal membrane oxygenation (ECMO) are looked after by a highly trained, multidisciplinary team. Simulation-based training (SBT) affords ECMO centers the opportunity to equip practitioners with the technical dexterity required to manage emergencies. The aim of this article is to review ECMO SBT activities and technology followed by a novel solution to current challenges. ECMO simulation: The commonly-used simulation approach is easy-to-build as it requires a functioning ECMO machine and an altered circuit. Complications are simulated through manual circuit manipulations. However, scenario diversity is limited and often lacks physiological and/or mechanical authenticity. It is also expensive to continuously operate due to the consumption of highly specialized equipment. Technological aid: Commercial extensions can be added to enable remote control and to automate circuit manipulation, but do not improve on the realism or cost-effectiveness. A modular ECMO simulator: To address those drawbacks, we are developing a standalone modular ECMO simulator that employs affordable technology for high-fidelity simulation.Peer reviewe

    Revolutionizing ECMO simulation with affordable yet high-Fidelity technology

    No full text
    This document is the Accepted Manuscript version of the following article: Mohammed Al Disi, Abdullah Alsalemi, Yahya Alhomsi, Fayçal Bensaali, Abbes Amira, and Guillaume Alinier, ‘Revolutionizing ECMO simulation with affordable yet high-Fidelity technology’, The American Journal of Emergency Medicine, Vol. 36 (7): 1310-1312, July 2018. Under embargo until 15 November 2018. The final, definitive version is available online via doi: https://doi.org/10.1016/j.ajem.2017.11.036.Simulation-based training (SBT) is becoming a necessity in educating healthcare professionals who work in high-risk environments, such as the intensive care unit (ICU). This applies to extracorporeal membrane oxygenation (ECMO), a complication-burdened life support ICU modality employed to treat patients with circulatory and/or respiratory failure. Additionally, ECMO can quickly restore perfusion, and hence, used in the pre-hospital or emergency setting as an extracorporeal cardiopulmonary resuscitation (E-CPR) strategy or to maintain donors’ organs after circulatory death. Different ECMO simulation models have been reported in the literature. It ranges from simple mannequin and circuit modification with manual control, to hydraulically capable, remotely controlled mannequins, and high-fidelity simulators. However, the common factor in the incumbent practices is the reliance on a functioning ECMO console and circuit components, which introduces a colossal cost barrier and requires active spending to replace ECMO consumables. Reliance of such specialized and potentially scarce pieces of equipment also significantly reduces training opportunities. Furthermore, attempts to improve the simulation paradigm are faced with ever-increasing technical difficulties. For example, basic objectives such as controlling the displayed circuit pressures requires creating a sophisticated hydraulic model. It becomes even more problematic when considering higher level objectives such as simulating blood oxygenation color differentials, or remotely controlling blood gas parameters, displayed on in-line monitors. Hence, there is a need for lower cost, high-fidelity simulation systems with more customization capabilities that meet the expectations and increasing demand for ECMO therapy.Peer reviewedFinal Accepted Versio
    corecore